Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(1): 136-141, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38147826

RESUMO

The fluorescence efficiency of excited molecules can be enhanced by many external factors. Here, we showcase a surprising phenomenon whereby light is used as a gating source to increase the fluorescence efficiency of organic cages composed of biphenyl subunits. We show that the enhancement of fluorescence is not due to structural changes or ground-state events. Cryo-fluorescence measurements and kinetic studies suggest a restriction of the phenyl-based structures in the excited state, leading to increased fluorescence, which is also supported by time-resolved measurements. Through computational calculations, we propose that the planarization of the biphenyl units within the cages contributes to emission enhancement. This phenomenon offers insights into the design of optoelectronic structures with improved fluorescence properties.

2.
ACS Appl Mater Interfaces ; 15(30): 36771-36780, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37486807

RESUMO

Much effort is being employed for designing "green" environmental emissive materials that are capable of color-tuning, i.e., down-converting the emission, and white-light generation (WLG). Here, we introduce a protein-based elastomer that can noncovalently bind a variety of chromophores while preventing their aggregation. Such binding capabilities are unique to the albumin-based materials that we use here in a process we refer to as "molecular doping". In the first part of this study, we explore the energy transfer across five different chromophores within the protein matrix, where the closely packed chromophore organization enables high energy-transfer efficiencies among them. In the second part, we show the easy control of blue, green, and red chromophores within the biopolymer, resulting in tunable emission properties of the film and WLG. The highly affordable chosen protein and the straightforward molecular doping strategy make our protein elastomers an attractive choice for an emissive material, as either a scaffold for investigating energy transfer in proteins or possible integration in light-emitting applications.

3.
Acc Chem Res ; 55(18): 2728-2739, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36053265

RESUMO

Molecular fluorescent probes are an essential experimental tool in many fields, ranging from biology to chemistry and materials science, to study the localization and other environmental properties surrounding the fluorescent probe. Thousands of different molecular fluorescent probes can be grouped into different families according to their photophysical properties. This Account focuses on a unique class of fluorescent probes that distinguishes itself from all other probes. This class is termed photoacids, which are molecules exhibiting a change in their acid-base transition between the ground and excited states, resulting in a large change in their pKa values between these two states, which is thermodynamically described using the Förster cycle. While there are many different photoacids, we focus only on pyranine, which is the most used photoacid, with pKa values of ∼7.4 and ∼0.4 for its ground and excited states, respectively. Such a difference between the pKa values is the basis for the dual use of the pyranine fluorescent probe. Furthermore, the protonated and deprotonated states of pyranine absorb and emit at different wavelengths, making it easy to focus on a specific state. Pyranine has been used for decades as a fluorescent pH indicator for physiological pH values, which is based on its acid-base equilibrium in the ground state. While the unique excited-state proton transfer (ESPT) properties of photoacids have been explored for more than a half-century, it is only recently that photoacids and especially pyranine have been used as fluorescent probes for the local environment of the probe, especially the hydration layer surrounding it and related proton diffusion properties. Such use of photoacids is based on their capability for ESPT from the photoacid to a nearby proton acceptor, which is usually, but not necessarily, water. In this Account, we detail the photophysical properties of pyranine, distinguishing between the processes in the ground state and the ones in the excited state. We further review the different utilization of pyranine for probing different properties of the environment. Our main perspective is on the emerging use of the ESPT process for deciphering the hydration layer around the probe and other parameters related to proton diffusion taking place while the molecule is in the excited state, focusing primarily on bio-related materials. Special attention is given to how to perform the experiments and, most importantly, how to interpret their results. We also briefly discuss the breadth of possibilities in making pyranine derivatives and the use of pyranine for controlling dynamic reactions.


Assuntos
Corantes Fluorescentes , Prótons , Sulfonatos de Arila , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Água/química
4.
ChemSusChem ; 14(24): 5410-5416, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34612599

RESUMO

Many efforts have been directed towards elucidating the nitrogenase structure, its biocatalytic activity, and methods to artificially activate it by external stimuli. Here, we investigated how semiconductor nanoparticles (NPs) with sizes ranging between 2.3-3.5 nm form nano-biohybrids with the nitrogenase enzyme and enable its photoinduced biocatalytic activity. We examined two homogenously synthesized quantum dots (QDs), CdS, CdSe, and two nitrogenase variants, the wild-type and a cysteine-mutated. We show that the cysteine-mutated variant does not enhance the hydrogen generation amounts, as compared with the wild type. Nevertheless, we show that the 2.3 nm-sized CdSe NPs facilitate an eightfold increase compared with larger CdSe NPs. The obtained results were investigated using electrochemical techniques, transmission electron microscopy, and further confirmed by time-resolved spectroscopic measurements, which allow us to determine the electron tranfer rate constant (kET ) of the different configurations.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Microscopia Eletrônica de Transmissão , Nitrogenase/genética
5.
Angew Chem Int Ed Engl ; 60(46): 24676-24685, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34492153

RESUMO

Light is a convenient source of energy and the heart of light-harvesting natural systems and devices. Here, we show light-modulation of both the chemical nature and ionic charge carrier concentration within a protein-based biopolymer that was covalently functionalized with photoacids or photobases. We explore the capability of the biopolymer-tethered photoacids and photobases to undergo excited-state proton transfer and capture, respectively. Electrical measurements show that both the photoacid- and photobase-functionalized biopolymers exhibit an impressive light-modulated increase in ionic conductivity. Whereas cationic protons are the charge carriers for the photoacid-functionalized biopolymer, water-derived anionic hydroxides are the suggested charge carriers for the photobase-functionalized biopolymer. Our work introduces a versatile toolbox to photomodulate both protons and hydroxides as charge carriers in polymers, which can be of interest for a variety of applications.


Assuntos
Biopolímeros/metabolismo , Luz , Proteínas/química , Animais , Ânions/química , Biopolímeros/química , Cátions/química , Bovinos , Condutividade Elétrica , Hidróxidos/química , Prótons , Soroalbumina Bovina/química
6.
Adv Mater ; 33(32): e2101208, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34219263

RESUMO

A most important endeavor in modern materials' research is the current shift toward green environmental and sustainable materials. Natural resources are one of the attractive building blocks for making environmentally friendly materials. In most cases, however, the performance of nature-derived materials is inferior to the performance of carefully designed synthetic materials. This is especially true for conductive polymers, which is the topic here. Inspired by the natural role of proteins in mediating protons, their utilization in the creation of a free-standing transparent polymer with a highly elastic nature and proton conductivity comparable to that of synthetic polymers, is demonstrated. Importantly, the polymerization process relies on natural protein crosslinkers and is spontaneous and energy-efficient. The protein used, bovine serum albumin, is one of the most affordable proteins, resulting in the ability to create large-scale materials at a low cost. Due to the inherent biodegradability and biocompatibility of the elastomer, it is promising for biomedical applications. Here, its immediate utilization as a solid-state interface for sensing of electrophysiological signals, is shown.

7.
Proc Natl Acad Sci U S A ; 117(51): 32260-32266, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288696

RESUMO

The fundamental biological process of electron transfer (ET) takes place across proteins with common ET pathways of several nanometers. Recent discoveries push this limit and show long-range extracellular ET over several micrometers. Here, we aim in deciphering how protein-bound intramolecular cofactors can facilitate such long-range ET. In contrast to natural systems, our protein-based platform enables us to modulate important factors associated with ET in a facile manner, such as the type of the cofactor and its quantity within the protein. We choose here the biologically relevant protoporphyrin molecule as the electron mediator. Unlike natural systems having only Fe-containing protoporphyrins, i.e., heme, as electron mediators, we use here porphyrins with different metal centers, or lacking a metal center. We show that the metal redox center has no role in ET and that ET is mediated solely by the conjugated backbone of the molecule. We further discuss several ET mechanisms, accounting to our observations with possible contribution of coherent processes. Our findings contribute to our understanding of the participation of heme molecules in long-range biological ET.


Assuntos
Metais/química , Protoporfirinas/química , Protoporfirinas/metabolismo , Impedância Elétrica , Transporte de Elétrons , Heme/química , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Metais/metabolismo , Nanofios/química , Porfirinas/química , Porfirinas/metabolismo , Soroalbumina Bovina/química
8.
J Mater Chem B ; 8(31): 6964-6974, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32500877

RESUMO

Hydrogels are common platforms for drug delivery applications. Amongst the different loading and release methodologies, physisorption loading and passive release stand out for their straightforwardness. However, evaluating the inner environment and the surface of the polymer can be complicated, as they can be very different from the properties of the monomer composing the hydrogel. Here, we explore the inner environment of macroscopic bovine serum albumin (BSA) hydrogels, by using both the native Trp residues of the protein and the pyranine photoacid as fluorescent probes. Time-resolved fluorescence is used to follow the fast solvation dynamics of Trp and the excited-state proton dissociation of pyranine. The results show that upon gelation, the surface of the BSA within the hydrogel is less accessible to water, i.e., more hydrophobic, as compared to before gelation. This understanding is used to rationalize the different drug binding efficiencies of the anti-cancer drug doxorubicin to the hydrogel at different pH values, which changes the charge of the molecule. Finally, we give proof for the hydrogels capacity to effectively function as drug-carrier systems in vitro, using different cancer cell lines over a 7 day period. Our study shows that relatively simple spectroscopic measurements can result in a fundamental structural and chemical understanding of (protein) hydrogels. From an application point of view, our protein hydrogels are very easy to form, without any need of complex chemical modification, they are very low cost as compared to other hydrogels, and show slow and sustained drug release profiles, all very sought-after properties.


Assuntos
Portadores de Fármacos/química , Hidrogéis/química , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas
9.
Chem Sci ; 11(23): 6097, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34101771

RESUMO

[This corrects the article DOI: 10.1039/C9SC04392F.].

10.
Chem Sci ; 11(13): 3547-3556, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-34109027

RESUMO

Proteins are the main proton mediators in various biological proton circuits. Using proteins for the formation of long-range proton conductors is offering a bioinspired approach for proton conductive polymers. One of the main challenges in the field of proton conductors is to explore the local environment within the polymers, along with deciphering the conduction mechanism. Here, we show that the protonic conductivity across a protein-based biopolymer can be hindered using straightforward chemical modifications, targeting carboxylate- or amine-terminated residues of the protein, as well as exploring the effect of surface hydrophobicity on proton conduction. We further use the natural tryptophan residue as a local fluorescent probe for the inner local hydration state of the protein surface and its tendency to form hydrogen bonds with nearby water molecules, along with the dynamicity of the process. Our electrical and spectroscopic measurements of the different chemically-modified protein materials as well as the material at different water-aprotic solvent mixtures result in our fundamental understanding of the proton mediators within the material and gaining important insights on the proton conduction mechanism. Our biopolymer can be used as an attractive platform for the study of bio-related protonic circuits as well as a proton conducting biopolymer for various applications, such as protonic transistors, ionic transducers and fuel cells.

11.
Nanomicro Lett ; 9(2): 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30460314

RESUMO

Bismuth containing nanomaterials recently received increasing attention with respect to environmental applications because of their low cost, high stability and nontoxicity. In this work, Bi-Bi2O2CO3 heterojunctions were fabricated by in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets via a simple hydrothermal synthesis approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) were used to confirm the morphology of the nanosheet-like heterostructure of the Bi-Bi2O2CO3 composite. Detailed ultrafast electronic spectroscopy reveals that the in-situ decoration of Bi nanoparticles on Bi2O2CO3 nanosheets exhibit a dramatically enhanced electron-hole pair separation rate, which results in an extraordinarily high photocatalytic activity for the degradation of a model organic dye, methylene blue (MB) under visible light illumination. Cycling experiments revealed a good photochemical stability of the Bi-Bi2O2CO3 heterojunction under repeated irradiation. Photocurrent measurements further indicated that the heterojunction incredibly enhanced the charge generation and suppressed the charge recombination of photogenerated electron-hole pairs.

12.
J Mater Chem B ; 5(21): 3927-3939, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264254

RESUMO

Organic-inorganic nanohybrids are becoming popular for their potential biological applications, including diagnosis and treatment of cancerous cells. The motive of this study is to synthesise a nanohybrid for the diagnosis and therapy of colorectal cancer. Here we have developed a facile and cost-effective synthesis of folic acid (FA) templated Fe2O3 nanoparticles with excellent colloidal stability in water using a hydrothermal method for the theranostics applications. The attachment of FA to Fe2O3 was confirmed using various spectroscopic techniques including FTIR and picosecond resolved fluorescence studies. The nanohybrid (FA-Fe2O3) is a combination of two nontoxic ingredients FA and Fe2O3, showing remarkable photodynamic therapeutic (PDT) activity in human colorectal carcinoma cell lines (HCT 116) via generation of intracellular ROS. The light induced enhanced ROS activity of the nanohybrid causes significant nuclear DNA damage, as confirmed from the comet assay. Assessment of p53, Bax, Bcl2, cytochrome c (cyt c) protein expression and caspase 9/3 activity provides vivid evidence for cell death via an apoptotic pathway. In vitro magnetic resonance imaging (MRI) experiments in folate receptor (FR) overexpressed cancer cells (HCT 116) and FR deficient human embryonic kidney cells (HEK 293) reveal the target specificity of the nanohybrid towards cancer cells, and are thus pronounced MRI contrasting agents for the diagnosis of colorectal cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...